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Quick Intro



Definitions
Sample Space: The set of all possible outcomes, 
denoted by S.

Event: A subset of the sample space. Consists of 
possible outcomes of the experiment, denoted by A.

Union (AUB): outcomes that are either in A or in B or in 
both A and B

Intersection (AB): outcomes that are in both A and B, 
also denoted as A⋂B

Complement: (A’): outcomes in the sample space 
S that are not in A



Axioms of Probability

All probability of an event has to follow the 3 Axioms of Probability.

Axiom 1:  0 ≤ P(E) ≤ 1

Axiom 2:  P(S) = 1

Axiom 3:



Conditional Probability & 
Independence
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Conditional Probability

Given two events E and F, The conditional probability is denoted by 
P(E | F).

🠄 both events happening
🠄 event F happening

Essentially this conditional probability is the probability of both events 
happening with the new sample space F, so the definition and general 
formula for P (E | F) if P (F) > 0 is:

P(F) has to be greater than 0 because a probability can’t be negative, 
and P(E | F) would be undefined if P(F) equals 0.



Gives the probability of the 
intersection of two events (both 
events happening).

A generalization of the above 
equation gives the probability of 
the intersection of n events.

This formula is extremely useful 
because sometimes it is much 
easier to calculate the probability 
of an event when we know whether 
or not another event it depends on 
has occurred.

Bayes’ FormulaMultiplication Rule



Independence

Two events E and F are independent if P(E | F) = P(E)
In other words when P(EF) = P(E) * P(F)

We can extend independence to more than two events. A set of events is 
independent if every subset of those events is independent.



Insurance Problem
● Two types of people: those who are accident prone and those who 

are not
● Accident-prone person will have an accident in a 1-year period with 

probability 0.4, and a person who is not accident prone has 
probability 0.2

● 30% of the population is accident prone

Suppose that a new policyholder has an accident within a year of 
purchasing a policy. What is the probability that they are accident 
prone?



Problem
Accident-prone person having an accident: 0.4
Non-accident-prone person having an accident: 0.2
Percent of population that is accident-prone: 0.3

Bayes’ Formula

A - the event that the policyholder is accident prone
B - the event that the policyholder will have an accident within a year of 
purchasing the policy



Discrete RVs
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What is a Random Variable?

● A variable whose value is unknown, represented by a function that 
assigns values to each of an experiment's outcomes. 

● Often designated by letters
● Can be classified as discrete or continuous
● Used in probability to quantify the outcome of a random experiment

a. Ex: when flipping a coin, Heads=1 & Tails=0



Definitions
Discrete RV: A discrete random variable is a variable that can take any whole 
number values as outcomes of a random experiment. 

● In real life, a discrete random variable could be represented as the 
number of passengers on a train or the number of defective computers 
out of a group of 100

It is defined by the probability mass function (PMF), p(a) = P{X = a}, which is 
always positive over a countable number of a. 

There are various types of discrete random variables, and we are going to be 
discussing the Binomial, Geometric, and the Poisson RVs



Expected Value & Variance

Expected Value: the predicted value of a random variable

● calculated as the sum of all possible values each multiplied by the 
probability of its occurrence

● essentially the weighted average of all the outcomes

Variance: degree of spread in the random variable

● calculated as the average of squared deviations from the mean 
(denoted as μ), with formulas

                                                                     OR

People often use expected value and variance to calculate the expected ROI 
for investments they make



Binomial RV
Definition: the number of predicted “successes” in an experiment consisting 
of N trials – the experiment can only take on 2 values (success or failure)

Parameters: n = the number of trials, P = the probability of 1 trial succeeding, 
K = the number of desired successes

Expected Value: n * p Variance: n * p * (1-p)



Binomial Example
Let’s say you buy some lottery tickets– 10 of the same kind. The probability 
that you get a winning ticket is 0.02. What is the probability that you get 3 
winning tickets? If the tickets cost you $5 each, and each winning ticket wins 
you $100, was it worth it to buy those tickets- or were you scammed?

Let X be the number of winning tickets you get. We can apply the formula

                                                        , letting n=10, k=3, and p=0.02, to find the 
desired probability:

P{X=3} = 10C3 (0.03)3(1-0.03)10-3 = 0.0026.

Now, the expected value is simply n*p, or 10*0.03= 0.3 successes, and so your 
expected ROI is $30 dollars–which means you’re probably scammed :D



Geometric RV
Definition: the number of predicted experiments that will be performed before 
reaching some number of “successes” (out of 2 options: success or failure)

Parameter: p = the probability of success for 1 trial, n (or sometimes k) = the 
number of the final (successful) trial.

Expected Value: 1/p — you need p * 1/p to get 100% 
chance of success

Variance: (1-p)/(p2)



Geometric RV Example
Example Problem: 3 out of 75 bulbs are defective, probability that the first 
defective light bulb is 6th?

#1: Define p, the probability that 
a light bulb is defective, and k, the 
number of trials needed to reach 
the “successful trial”

#2: Plug into formula



Poisson RV
Definition: the number of times an event is likely to occur over a specific 
interval (time, pages of a book, etc.)

● It is also a good approximation to binomial RVs for very large values 
of n and very small values of p

Parameter: λ = mean number of events in a given interval

Expected Value: λ

Variance: λ



Poisson Example 

Let’s say that the number of typos on any given slide of this 
presentation follows a Poison distribution of 𝜆=0.5. What is 
the probability that there is at least one error on this slide?

To solve this, we can let X be the Poisson RV, which is the 
number of errors on this slide. 

Then,  we can apply the formula and simplify to get

Note: e-½ is the simplified result of (0.5)0(e-½)⁄0! .



Continuous RVs
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Definitions:
● A continuous random variable is a random variable that is defined over a range of 

values
○ In real life, they are usually measurements (height, time required to run 100 

meters, etc.)
● A continuous RV is defined by a probability density function f(x) (PDF), a 

non-negative function defined over all real numbers that functions similarly to the 
PMF in the discrete case

● Finding the probability of a continuous RV being within an interval (a,b) requires 
finding the area under its probability curve- also known as taking an integral of 
the function between a and b. 



Since we talked about expected value and variance earlier, and 
since the continuous RV is just another random variable, let’s 
try to find E[X] and Var(X) of a continuous RV X, defined by

Here are some formulas that we are going to use:

Quick Example on Continuous RVs!



 Now let’s take a look at the solution:

Quick Example on Continuous RVs!



 Now let’s take a look at the solution:

Quick Example on Continuous RVs!



Joint Probability
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Joint distribution functions

A joint distribution function is simply one that describes the probability of two or 
more random variables in one function.

For any two random variables X and Y, the joint probability distribution function 
(which describes the related probabilities of X & Y) is defined as

And their joint probability mass function is defined as



Joint RVs Example (Poisson)

Joint Probability:  
        =   

Radioactive particles reach a Geiger counter (a machine that counts the number 
of radioactive particles) according to a Poisson process at a rate of  μ = 0.8 
particles per second.
What is the probability that the Geiger counter detects (exactly) 1 particle in the 
next second and 3 or more in the next 4 seconds?

Plug in values!

f1  =  

f2  =  



Joint Distribution (Independent)
When computing a joint distribution, the two variables are 
independent of each other when

In simple words, X and Y are independent if knowing the value of 
one does not change the value of the other.

If the variables are independent, the desired probabilities are 
multiplied, in accordance to the laws of conditional probability.



Joint Distribution: Discrete
● Suppose X and Y are two discrete random variables and that X takes values from 

{x1, x2, . . . , xn} and and Y takes values {y1, y2, . . . , ym}

● The ordered pair (X, Y ) take values in the product   {(x1, y1),(x2, y2), . . .(xn, ym)}

● The joint probability mass function (joint pmf) of X and Y is the function p(xi, yj ) 
giving the probability of the joint outcome X = xi, Y = yj .

● This is organized in a joint 
probability table

● The total probability must equal      
1, represented by a double sum



Joint Distribution: Discrete Example
● Suppose you roll two dice. Let X be the value on the first die and let T be the total 

on both dice. This would be represented in the joint probability table as follows



● Continuous case: replace discrete sets of values by continuous 
intervals, and use the sums by integrals to compute

● If X takes values in [a, b] and Y takes values in [c, d] then the pair 
(X,Y) takes values in the product [a, b] × [c, d]

● The total probability must equal 1,  expressed as a double integral: 

Joint Distribution: Continuous

● We will not be providing a worked example for this, as it involves a lot 
of calculus



Markov Chains
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Markov Chain Sequence
Consider an event with different states it could be in. A Markov chain is a 
model describing a sequence of events when the probability of each event 
depends only on the probability of the previous event. 

A sequence of random variables X0, X1, …., can be in states {0, 1, …, M}. Xn is the 
state at time n, and the system is in state i at time n if Xn = i. 

Example:
Any day in the town Lexington can be sunny, cloudy, rainy, or windy.
The sequence of days are X0, X1, ….; the states are sunny, cloudy, rainy, or windy; 
the date would be time n.



Transitional Probabilities
The sequence of random variables X0, X1, …., is said to form a Markov 
chain if each time the system is in state i, there is a fixed probability, Pij, 
that the system will next be in state j.

The values Pij , 0 ≤ i ≤ M, 0 ≤ j ≤ N are called transition probabilities of a 
markov chain if they satisfy:

1. Pij ≥ 0     ← The probability of being in state j if currently in state i can not be negative

2.                ← An event has 100% probability of transitioning into the next event

3. i = 0, 1, …., M ← An event could be in states 0, 1, …., M



Transitional Probabilities continued
The transition probabilities can be represented as

P{Xn+1 = j | Xn  = i, Xn-1 = in-1 , …., X1 = i1 , X0  = i0 } = Pij     for all i0 ,...., in-1 , i, j

Example:
In Lexington, if today is sunny, tomorrow has 0.5 chance of being 
sunny, 0.15 chance of being cloudy, 0.1 chance of being rainy, and 0.25 
chance of being windy.
● If today is cloudy, tomorrow has 0.2 chance of being sunny, 0.15 chance of being cloudy, 

0.5 chance of being rainy, and 0.15 chance of being windy.
● If today is rainy, tomorrow has 0.25 chance of being sunny, 0.5 chance of being cloudy, 0 

chance of being rainy, and 0.25 chance of being windy.
● If today is windy, tomorrow has 0.6 chance of being sunny, 0.2 chance of being cloudy, 0 

chance of being rainy, and 0.2 chance of being windy.



Transition Matrix
However, it is more convenient to arrange the transition probabilities Pij 
in a matrix, and this matrix is called the transition probability matrix.

Sunny

Cloudy

Rainy

Windy

Sunny     Cloudy    Rainy     Windy

🠄 Weather of next day

🠄
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*Notice how each row 
adds up to 1

For example, the transition matrix of weather in Lexington is:



Transformation Matrix
The transition matrix can be used as a transformation matrix. The 
transformation matrix can be used in many different ways.

For example, the weather in Lexington can be represented as

The probability of weather in Lexington in n days is:



Transformation Matrix continued
Continuing with our example, the probability of each weather in 2 days 
(if day 1 is sunny) is:

So there’s 45.5% chance it will be sunny again, 19.75% it will be cloudy, 
12.5% it will be rainy, and 22.25% it will be windy in 2 days.



Calculations and Observations

🠄 notice how each row eventually 
becomes similar

🠄 notice how the values doesn’t 
really change after a large number 
of transformations

🠄 calculated using calculator (with 
rounding)



Steady State

As seen in the previous slide, the probabilities doesn’t really change 
after a large number of transformations. Eventually the system 
reaches a state where further transformations wouldn’t change the 
probabilities. This is called a steady state, and it gives the long-term 
probability of a system.

The steady state can also be calculated with precise math.



Steady State continued
Let S be the steady state and T be the transition matrix.

ST = S    🠄 further transformations does not change the steady state
Sunny Cloudy Rainy                   Windy

System of equations



Steady State continued
Put into matrix form:

Using RREF, a method used for matrix calculations:

On any given day, Lexington has 42.08% chance of being sunny, 
21.29% of being cloudy, 14.85% of being rainy, and 21.78% of being 
windy.



Thank you!


